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In this paper, we present an enhanced version of the two-scale numerical homogenization
with application to asphalt concrete modeling in the elastic range. We modified the method
of effective material parameters tensor assessment for analysis based on the representative
volume element (RVE). As the method was tested on asphalt concrete, we also present two
possible approaches to geometrical modeling of its internal microstructure. Selected numer-
ical tests were performed to verify the proposed approach. The main novelties of this study,
i.e. higher order approximation at the macroscale and modification of boundary conditions
at the level of RVE analysis, improved the efficiency of our methodology by error reduction.
Practically, we obtained a reduction of NDOF up to 3 orders of magnitude (comparing to
full-scale and homogenized analysis) that was accompanied with the introduced error of
order of several percent (measured in L2 norm).
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1. Introduction

Roads are systematically classified as “linear infrastructure objects”. Practically, they exhibit
a fully three-dimensional structure as multi-layered domains. In Poland, the roads with flexible
pavement structures still remain the most popular among other types of pavements, i.e., rigid
or semi-rigid ones. A flexible pavement structure consists of several asphalt layers and subbase
layer(s) made of crushed rock resting on an improved subgrade. Due to specific groundwater
or ground conditions, some additional layers (e.g., those made of geosynthetics) may be also
applied.
The upper layers of the asphalt pavement structure play different roles in providing the de-

manded bearing capacity, durability and other parameters of the whole structure. Consequently,
their internal structures are also different. It is mainly due to variety of asphalt mixture types
that can be selected: asphalt concrete (AC), stone-mastic-asphalt (SMA), hot-rolled asphalt
(HRA), reclaimed asphalt pavement (RAP), to mention only a few. The diversity within a spe-
cific mixture type can be obtained using extra additives or modifying the gradation curve of the
aggregate mixture.
In this paper, we focus on the selected aspects of asphalt concrete modeling. In particular,

the asphalt concrete microstructure and its impact on the effective macroscale parameters is
studied. In Fig. 1, one can observe the limiting gradation curves of this asphalt mixture used for
different pavement layers (GDDKiA, 2014). It can be noticed that the gradation is coarser for
the bottom layers than for the upper ones. It is not only exclusively due to the fact that thickness
of the subbase is greater than that of the wearing and binder course. Finer aggregate is used for
the wearing course to resist visco-plastic deformations (ruts) occurring herein. Consequently, a
coarser aggregate is used in the subbase in order to reduce the risk of structural deformations.

1Paper presented during PCM-CMM 2023, Gliwice, Poland
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Fig. 1. AC gradation curves for different pavement layers plotted in a semilogarithmic scale (traffic
category KR3-KR6)

As a material, asphalt concrete is a mixture of two main phases: aggregate particles and a
mastic (which is, in turn, a mixture of the bitumen binder and mineral filler). The weight ratio
of these two main phases is greater than 90/10. Volumetrically, several percent of air voids can
be also distinguished. The description presented above is a rough approximation of the asphalt
concrete recipe in its traditional form. There is a very active research field devoted to neat
asphalt modifications, mastic modifications as well as the replacement of the natural aggregate
mixture with different industrial wastes in the spirit of less-waste philosophy (Fakhari Tehrani
et al., 2013; Kim et al., 2013; Schüller et al., 2016; Ziaei-Rad et al., 2012).

Aiming at the reliable numerical analysis of asphalt concrete, one needs to decide on the
number of aspects. Let us list a three of them that are fundamental in our opinion:

• Analysis scale – from atomistic to the specimen/pavement structure scale (called in this
paper as the macroscale). It is noticeable that the macroscale response is highly related
to phenomena observed at the lower scales. In this paper, we present the framework for
multiscale analysis that bridges the macroscale with the asphalt mixture scale (referred to
as the microscale). We decided to keep this nomenclature for the sake of brevity. In the
literature, the asphalt mixture scale is sometimes referred to as the mesoscale, whereas
the microscale term is reserved for the scale of mastic with particles of dimensions of
several µm. In this distinction, however, it would be difficult to describe the scale of
asphalt mortar (with particles smaller than 2mm). The sequence of consecutive analysis
scales is shown in Fig. 2. Summing up, we model the specimen at the macroscale with
its spatial dimensions kept but with the assumption on the homogeneity of the domain.
Its effective parameters are numerically assessed on the basis of the microscale analysis.
Precisely, we use the specific material parameters for the inclusions and for the matrix at
the microscale and compute effective macroscale quantities.

• Material model – for every analysis scale addressed in this paper, one can easily identify
the heterogeneity of its underlying scale. Regardless of the selected material model at the
specific scale, the material response is evidently affected by lower scale phenomena. In the
case of asphalt concrete, the constitutive equations describing the bitumen behavior are of
particular interest. Linear (Aigner et al., 2009; Collop et al., 2003; Fakhari Tehrani et al.,
2013; Klimczak and Cecot, 2020a; Mo et al., 2008; Woldekidan et al., 2013; Ziaei-Rad et al.,
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Fig. 2. Sequence of the selected analysis scales addressed in this study (yellow dotted line illustrates the
occurrence of further underlying scales)

2012) and nonlinear viscoelasticity (Mitra et al., 2012; Schüller et al., 2016; Woldekidan et
al., 2013), viscoelastoplasticity (Aigner et al., 2009; Collop et al., 2003), viscoelasticity with
damage (Kim et al., 2013) and other theories are developed, to mention only a few. For
the sake of brevity, we present in this study our results with the assumption on the elastic
behavior of the binder phase. From the engineering point of view, this is a very strong
assumption and can be understood as steady-state analysis at a specific temperature. The
main scope of this paper is the application of the developed numerical method, however.
Consequently, we apply both for the binder and aggregate phases the assumption on the
linear elasticity in order to present the main findings of our research. Nonlinear analyses
of materials can be found in our previous papers (Klimczak and Cecot, 2020b; Oleksy and
Cecot, 2015).

• Direct/multiscale analysis – numerical analysis of the composite can be performed at a
specific scale in a manifold manner. An assumption on the domain homogeneity can be
made and the effective parameters are assessed phenomenologically/analytically or numer-
ically. Consequently, the complexity of numerical analysis at this scale is very low, but the
material response can be very smoothened. On the contrary, a very resource-consuming
direct analysis can be performed with accounting for the internal structure of the com-
posite (Fakhari Tehrani et al., 2013; Mitra et al., 2012; Mo et al., 2008; Ziaei-Rad et al.,
2012). This type of analysis provides a deep insight into the lower scale phenomena, but it
is time consuming and produces also an amount of data that can be hard to analyze and
process. Somewhere in-between, there is a large group of multiscale methods. Generally,
the macroscale analysis is performed at a low cost, but the microscale oscillations are ac-
counted for performing some additional local analyses. The methods based on the concept
of the representative volume element (RVE) are of particular significance nowadays.

In the field of asphalt concrete numerical modeling, one can distinguish a number of ap-
proaches to the above-mentioned aspects. A specific methodology is typically a trade-off between
the complexity of the analyzed phenomena and the numerical cost of analysis. Below, we dis-
cuss several selected methodologies used in numerical modeling of asphalt concrete (or similar
asphalt mixtures).

In (Collop et al., 2003), the authors developed an elasto-visco-plastic model with damage
for asphalt pavement layers. They modeled a multi-layered domains with the assumption on the
homogeneity of every layer. The numerical effort of the analysis consisted in a time-stepping
algorithm, whereas the geometry of the pavement structure was simple due to the assumed
effective parameters for the whole layer. No multiscale analysis was necessary. In (Woldekidan
et al., 2013) and their other papers, the authors extended the scope of the analysis presented
in (Collop et al., 2003) and assessed the effective parameters of the asphalt concrete at differ-
ent observation scales and for different material models. Such studies can be understood as a
phenomenological assessment of the effective material parameters.
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In (Mo et al., 2008), the authors analyzed performance of porous asphalt concrete with a
particular focus on the ravelling process (loss of wearing course aggregate particles). The internal
structure of the domain was idealized significantly to facilitate the analysis. The authors used
cylindrical (2D) or spherical (3D) objects to geometrically model the aggregate particles. They
studied the interfacial zone between them and the bitumen binder using the viscoelastic material
model. Since the analyzed specimens were idealized, it was possible to carry out a direct analysis.
Nevertheless, it was an attempt to include in the numerical analysis the microscale phenomena.
The numerical cost was reduced by geometry simplification.

Another approach to reliable modeling of asphalt concrete with a direct microstructure can
be found e.g. in (Klimczak and Cecot, 2020a; Ziaei-Rad et al., 2012). Therein, the authors ana-
lyze the specimens with the microstructures equivalent to the actual one. Namely, they generate
synthetic microstructures possibly similar to the realistic ones. However, it is somehow arbitrary
how to verify the similarity of these two types of microstructures beyond the visual inspection.
The methods based on the Voronoi tessellation combined with the control of prescribed gra-
dation curves are a typical approach. The shapes of inclusions are close to the realistic ones
yet simplified. Consequently, direct transient analysis using e.g., viscoelasticity principles can
be carried out at the microscale. Simplification of the aggregate particle shapes allows for a
substantial reduction of the number of elements/nodes necessary for the numerical analysis.
Typically, the asphalt mixture scale is used. If the contact phenomenon was also the analyzed
problem, the aforementioned internal structural simplifications should refer to the respective
scale. Oversimplified geometries would not cover the binder-aggregate interaction properly.

A very important and active research field is a multiscale analysis of composites. There is
a wide spectrum of methods within this approach. For their comprehensive classification and
review, we refer the reader e.g. to (Belytschko and de Borst, 2010; Fish, 2014; Kouznetsova
et al., 2002). Such a summary is beyond the scope of this paper. Instead, the applications of
selected multiscale methods to the modeling of asphalt concrete and similar asphalt mixtures are
briefly summarized below. The common feature of all these methods is the fact that they bridge
the neighboring scales. The information derived from the lower analysis scale is transferred
to the upper scale in order to facilitate computations at this level. Schematically, additional
computations are necessary to incorporate the lower scale information at the upper scale. This
cost, however, is justified in a manifold manner. Firstly, it is a way of making the analysis at
some lower scales feasible. Secondly, the speed-up (very often due to possible parallel computing)
is observed. A time-consuming direct analysis can be avoided. Thirdly, a number of neighboring
scales can be analyzed simultaneously giving a deeper insight into the impact of the modifications
introduced at the lower scale on the overall material response.

In (Aigner et al., 2009), the authors used the concept of the localization tensor to study
viscoelastic properties of asphalt concrete. Assuming spherical inclusions (aggregate particles)
and using the Mori-Tanaka scheme (Mori and Tanaka, 1973) they obtained closed formulas
for the effective material parameters at the macroscale. The idea of the representative volume
element (RVE) was used to compute them locally. The RVE size should correspond with the size
of inclusions to represent full information on the microstructure. Since asphalt concrete exhibits
a random microstructure, this concept is more suitable than the unit-cell approach used for
periodic domains.

In (Feyel and Chaboche, 2000; Guedes and Kikuchi, 1990; Kouznetsova et al., 2002), the
computational homogenization (typically associated with the finite element method) was devel-
oped and tested on various materials. Its standard version is also based on the RVE concept.
In numerical analysis, two neighboring scales are specified. At the macroscale, one generates
a coarse mesh and specifies a set of characteristic points (usually Gauss integration points) at
this level. With each of such points, an RVE representing the local microstructure is defined.
An iterative analysis is performed to transfer interchangeably the information from both scales.



Higher order numerical homogenization in modeling of asphalt concrete 355

First, the macroscale problem is solved. Deformation at Gauss points is used as a boundary
condition for auxiliary boundary value problems solved within the RVE’s corresponding with
these points. Subsequently, the averaged quantities – see (Feyel and Chaboche, 2000; Guedes
and Kikuchi, 1990; Kouznetsova et al., 2002) for details – from this level are transferred to the
macroscale and used for the next iterative solution. It should be underlined that no assumption
on the material model at the macroscale is necessary in this approach, since the averaged strains
and stresses are computed at the microscale level. In terms of the asphalt concrete modeling,
the computational homogenization was used e.g., in (Kim et al., 2013; Schüller et al., 2016).

In (Wimmer et al., 2016), a method of synthetic microstructure generation based on the
Voronoi tessellation was presented to model the RVE. These local microstructures were later
used for a randomly located set of RVE’s. For each of them, periodic boundary conditions were
used. Finally, the effective material parameter tensors were assessed using the statistics. The
linear elastic model was used both for the matrix and the inclusions.

In (Schüller et al., 2016), the effective macroscale stress using the generalized Maxwell-Zener
viscoelastic model was computed on the basis of the RVE analysis. The authors also generated
the Voronoi diagram-based microstructures replacing those obtained using the X-ray computed
tomography (XRCT) as leading to the overkill mesh generation.

In (Kim et al., 2013), the computational homogenization was used in order to bridge the ef-
fect of the cohesive zone occurrence at the microscale with damage observed at the macroscale.
The macroscale stresses and strains were computed in terms of the microscale ones. Two nu-
merical tests performed for idealized and real-like RVE microstructures illustrated the proposed
framework.

Another approach to modeling of asphalt concrete was presented in (Klimczak and Cecot,
2020b). Therein, special shape functions accounting for the complex microstructure of the ana-
lyzed material were used for the solution approximation at the macroscale. This approach was
successfully used for both the linear elastic and viscoelastic material models.

2. Methodology

2.1. Numerical homogenization

In this paper, we present the framework for higher order numerical homogenization of asphalt
concrete. The numerical homogenization was developed e.g., in (Zohdi and Wriggers, 2005). Its
idea is also based on the RVE concept. Namely, one performs a set of numerical tests for the
identified RVE (Fig. 3).

Fig. 3. A set of numerical tests (left) and their solutions (right)

Accounting for the microstructure observed at the RVE level, one solves a set of boundary
value problems corresponding to real laboratory experiments (Fig. 3). Such an approach can be
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understood as substitution of a similar procedure realized in a laboratory (phenomenological
approach). In the numerical homogenization, average strain 〈εij〉 and stress 〈σij〉 components
are computed as follows for these tests

〈εij〉 =
1

V

∫

Ω

εij dΩ 〈σij〉 =
1

V

∫

Ω

σij dΩ (2.1)

Assuming the constitutive law of the form

〈σ〉 = Ceff 〈ε〉 (2.2)

one can obtain the effective tensor of material parameters Ceff . Depending on the expected
material behavior, various forms of this tensor can be adopted. In the case of asphalt concrete,
the choice between isotropy or anisotropy seems reasonable. Such effective tensors of material
parameters should be assessed for every RVE. The boundary value problem at the macroscale
is finally solved using these effective tensors.

2.2. Analysis enhancements

In our study, we propose additional enhancements of the methodology presented in the previ-
ous Section. Firstly, we use the higher order approximation at the macroscale level (hierarchical
shape functions used). Secondly, we modify the boundary conditions used for numerical tests
performed for the specified RVE. This modification is based on the observation that the numer-
ical tests are to reflect the behavior of the heterogeneous subdomain from the interior of the
whole analyzed domain. Hence, the boundary conditions should account for the heterogeneity
of the material along the boundaries. The idea is schematically presented on the example of the
shear test in Fig. 4. Instead of the standard boundary conditions marked with red dashed lines,
we use their modified versions marked with blue continuous lines.

Fig. 4. Modified Dirichlet boundary conditions used for a specific RVE test

Modifications of the boundary conditions are performed in the spirit of the multiscale fi-
nite element method (Klimczak and Cecot, 2020b). Namely, we solve auxiliary boundary value
problems along the edges of the RVE, where at least two components can be distinguished.
Practically, in the examples presented in this paper, we used 4 types of Dirichlet boundary

conditions. They are schematically shown in Fig. 3 and represent tensile and shear tests in both
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directions. We used the prescribed displacement of 5% for all four RVE tests. In the case of
shear tests, it was the maximum value (c.f. Fig. 4).
On the basis of our experience with the multiscale finite element method, MsFEM (Klimczak

and Cecot, 2020a,b), we were aware of the influence of heterogeneities occurring along the domain
boundary on the homogenized solution. In terms of the MsFEM, we modify the standard shape
functions in order to account for the domain (and also its boundary) heterogeneity. That method
results in the assessment of effective macroscale stiffness matrices that contain information on
the homogenized material properties.
In terms of the RVE-based homogenization methods, the influence of the heterogeneous

boundary can be also accounted for using a buffer (homogeneous) zone with an experimentally
adjusted width. This approach shares the similar observation that was the basis of our research.
Namely, the subdomain occupied by the RVE (when the whole domain is subject to the load) does
not exhibit the response being just a copy of the macroscale boundary conditions. Even in the
case of the tensile test, the response within the domain is not linear due to its heterogeneity. Thus,
it should be accounted for in the RVE analysis. Motivated by the MsFEM approach, we modify
Dirichlet boundary conditions used for all 4 RVE tests. Considering the enforced displacements
(see Fig. 3) as functions ψ, we propose below the method for their modifications that covers the
microstructure heterogeneity along every RVE edge. Graphically, the idea is shown in Fig. 4 on
the example of a shear test. Therein, one can observe the effect of our algorithm performance
with respect to the standard boundary conditions used for the corresponding RVE test.
Given ψ, which is a standard scalar function describing Dirichlet boundary conditions, we

look for its scalar-valued counterpart ϕ that is a discrete solution of the following Dirichlet
boundary value problem with ϕ ∈ C0(Ω)

d

ds
(2µ+ λ)

dϕ

ds
= 0 ∀s ∈ (0, l)

ϕ = ψ on ∂Ω

(2.3)

where µ and λ are Lamé constants, Ω is the analyzed RVE domain and l is length of the analyzed
RVE edge.
Schematically, the proposed framework consists of the following steps:
• Generation of a set of RVE’s.

• Solution of the auxiliary boundary value problems along the RVE edges with two phases
present.

• Solutions of the microscale numerical tests with modified boundary conditions for every
RVE, which leads to assessment of the effective parameters tensors Ceff .

• Solutions of the macroscale problem with effective parameter tensors used at the integra-
tion points.

For the numerical tests presented in this paper, we used also some additional assumptions. In
order to provide a reliable comparison between direct and multiscale approaches, we proceed as
follows:
• A coarse mesh is generated at the macroscale level.

• Each of the coarse mesh elements is treated as the RVE i.e., a mesh refinement is performed
within every RVE in order to account for the underlying microstructure.

• Effective parameters tensors Ceff are assessed for every RVE/coarse mesh element.

• The macroscale problem is solved using these effective tensors for integration.

For the sake of further comparison, for direct analysis we globally generate a fine mesh that
is a union of fine meshes generated within RVE’s/coarse mesh elements. In such a way, the
asphalt concrete microstructure is accounted for with the same precision for both the direct and
multiscale analysis. At the macroscale level, we use the higher order approximation to increase
the accuracy of the solution.
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3. Numerical results

In order to illustrate the efficiency of the proposed approach, we present two numerical tests:
with a periodic AC synthetic microstructure and with a non-periodic one recognized from a
high-quality image. For the sake of simplicity, we use dimensionless quantities for the tests.

3.1. Test 1: periodic AC microstructure

The periodic microstructure generated for this test was prepared according to the procedure
presented in (Klimczak and Cecot, 2020b). Namely, a gradation curve for the aggregate is selected
first. Then, a packing of spheres/circles algorithm is used to populate the oversampled domain
with spheres of diameters corresponding to the gradation curve. Subsequently, only the centers
of spheres/circles belonging to the analyzed domain (a subdomain of the oversampled domain)
are left. They are copied in a 3x3 pattern and serve as seeds of Voronoi tessellation. Finally,
only the microstructure cut out from the analyzed domain is left (see Fig. 5). Such an RVE local
microstructure can be copied in both directions creating a periodic microstructure.

Fig. 5. Macroscale boundary value problem (left) and the periodic RVE (right)

In this test, we created an exemplary microstructure consisting of 24 RVE’s shown in Fig. 5.
Boundary conditions are also presented therein. The problem is analyzed on the assumption that
both the aggregate particles and the binder are linear elastic. Additionally, the plane strain state
is assumed. Young’s moduli are equal to 80·109 (aggregate) and 10·109 (binder). Poisson’s ratios
are equal to 0.35 (aggregate) and 0.3 (binder). In Fig. 6, the domain microstructure obtained by
copying the RVE in a 4× 6 pattern and the corresponding fine mesh are shown. Since all RVE’s
exhibit the same microstructure, the tensor of effective parameters was assessed only once and
used for every coarse mesh element.

Fig. 6. Domain microstructure and the zoomed-in fine mesh

In Fig. 7, we present the comparison between the reference solution (top row, p = 1, NDOF =
500000) and the homogenized one (central row) obtained for the approximation order p = 1 at
the macroscale. Additionally, the absolute error is presented in the bottom row. The coarse mesh
consists of 24 rectangular elements.

It should be emphasized that the reference solution was obtained using approximately half
a million degrees of freedom. The error convergence for this test is shown in Fig. 8. It can be
observed that a substantial reduction of degrees of freedom was obtained in the test even for
the linear approximation used at the macroscale level. Modifications of the boundary conditions
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Fig. 7. Comparison between the reference and selected homogenized solutions – Test 1 (reference
solution - top row, homogenized solution for the linear approximation at the macroscale – central row,

absolute error – bottom row)

in the RVE tests increased the accuracy of the results. It can be seen that the convergence
rate for the “modified BC’s” solution (blue line) is faster than for the “standard BC’s” solution
(remaining lines).

Fig. 8. Error p-convergence (logarithmic scale)

For the standard boundary conditions used in RVE tests, we additionally examined the
influence of the assumption on anisotropy/isotropy of asphalt concrete. This effect was negligible
(green and black lines).
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3.2. Test 2: non-periodic AC microstructure

In this test, we generated the AC microstructure from a high-quality image of the real
specimen. The scheme of image processing used for the microstructure recognition is presented
in Fig. 9. The AC image shown therein is the actual one used in this test. It is also the case of
the resulting microstructure geometry.

Fig. 9. Recognition of the AC microstructure using image processing

The first step in the image processing is image binarization. Small objects (“holes”) within
larger subdomains are removed subsequently. The next step is typically the filtering process
that allows for further microstructure simplification. Namely, the objects with an area smaller
than a threshold value are removed. Subsequently, the boundaries of aggregate particles are
detected. At this level, the microstructure geometry can be further simplified due to possible
boundaries processing. For the sake of this test, we used a moderate simplification in order to
avoid excessively dense finite element mesh.
Material data for this test are the same as for the previous one, whereas the boundary

conditions and domain dimensions are different (see Fig. 10).

Fig. 10. Analyzed domain

Since the microstructure geometry is non-periodic, tensors of effective material parameters
were assessed for each coarse mesh element independently. In this test, we also investigated the
effect of the increasing approximation order at the macroscale level. In addition, we generated
2 coarse meshes consisting of 1× 4 and 2× 8 square elements, respectively. It is to present the
necessity of careful RVE size selection.
In Fig. 11, the comparison between the reference and the homogenized solutions obtained

for 2 × 8 coarse elements discretization at the macroscale is presented for the linear approxi-
mation used at both levels. In order to obtain the reference solution, the problem consisting of
approximately 100000 degrees of freedom had to be solved.
Qualitatively, all of the homogenized solutions (these shown in Fig. 11 and those skipped

for the sake of brevity) are of an acceptable form. Quantitative analysis can be performed using
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Fig. 11. Comparison between the reference and selected homogenized solutions – Test 2 (reference
solution – top row, homogenized solution for the linear approximation at the macroscale – central row,

absolute error – bottom row)

Fig. 12. Error p-convergence (logarithmic scale)

p-convergence for both coarse discretizations (shown in Fig. 12). We present in Fig. 12 the
homogenized results obtained both for the standard and modified Dirichlet boundary conditions
at the RVE level analysis. The difference between these curves for the coarser (1× 4 elements)
discretization is very small. The introduced modifications cause even a slight deterioration of
the homogenized solution accuracy. The results for this discretization are shown in order to
emphasize the necessity of careful selection of the RVE size. All of the approaches based on the
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RVE concept require a distinct separation of scales. It refers to two cases: the ratio of the RVE
size and the domain size as well as the ratio of the inclusion size to the RVE size. In practical
applications, the coarser (1 × 4 elements) discretization would not be used due to violation
of separation of the scales condition. For a more justified discretization (2 × 8 elements), the
modification of Dirichlet boundary conditions at the RVE level improved the solution accuracy.

4. Discussion

Every newly developed numerical method should be effective in a sense of computational re-
sources consumption. The numerical homogenization is evidently a reliable and efficient method.
In the tests presented in the previous Section, it allowed for a substantial reduction of the num-
ber of degrees of freedom necessary in the analysis. Instead of a direct approach leading to
a 500000-NDOF (Test 1) or 100000-NDOF (Test 2) problem, one can solve an equivalent 70-
NDOF (Test 1, p = 1) or 20-NDOF (Test 2, p = 1, 1 × 4 finite elements) problem. Analyzing
the introduced additional modeling error, approximately 7% and 13% for these two cases were
measured in L2 norm, respectively. In some initial tests, even such values are of an acceptable
order. As it was demonstrated in Figs. 8 and 12 that the solution accuracy can be easily im-
proved by a higher order approximation and modification of Dirichlet boundary conditions in
the RVE analysis.
The numerical effectiveness of the proposed framework can be summarized as follows:

• RVE analyses are performed independently, hence this process can be parallelized.

• Assessment of the effective tensors of material parameters is performed only once, an
increase of the approximation order at the macroscale does not require any updates, since
standard shape functions are used.

• For a periodic microstructure, only one effective tensor of material parameters needs to be
assessed.

• Modification of the boundary conditions for the RVE analysis is relatively cheap, since it
is performed only along the boundaries.

5. Conclusions

In this paper, we presented the application of the newly developed version of numerical ho-
mogenization to linear elastic analysis of asphalt concrete. The main novelties of the proposed
approach are as follows:

• Application of a higher order approximation at the macroscale level.

• Enhancement of the standard numerical homogenization due to modification of Dirichlet
boundary conditions used for RVE analysis.

• Solution of two numerical tests with periodic and non-periodic asphalt concrete microstruc-
tures.

The obtained results confirmed the applicability of the developed method to linear elastic
analyses of asphalt concrete. Precisely, we demonstrated that a reduction of the number of
degrees of freedom by several orders of magnitude introduced the error at the acceptable level
(maximum 13% was measured).
Our future research plan is to apply this approach to nonlinear analyses of asphalt concrete.

In the limit of small displacements, we developed some alternative methods (Klimczak and
Cecot, 2020a; Oleksy and Cecot, 2015). Therein, weak formulations of nonlinear problems were
expressed in such a way that the terms corresponding to inelastic strains were added to the right-
-hand side (load vector). The stiffness matrix remained the same for all nonlinear iterations. In
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terms of numerical homogenization, it means that the most time-consuming computations of
Ceff would be performed only once, as for the linear elasticity.
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